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0.5, the observed amphibole-out curve is a melting 
reaction above 4.5 kb. Between 3.5 and 4.5 kb, the 
upper temperature stability of amphibole is limited 
by the dehydration curve, although that curve lies 
above the H20-saturated amphibole-out curve. Below 
3.5 kb, the upper stability limit is still the dehydra­
tion curve, but the amphibole-out curve now lies be­
low the H20-saturated curve. 

Fig. 4c correctly predicts observed melting behav­
ior at 5.5 kb. The amphibole-out curve for X~o = 
0.5 lies above the curve for X~20 = 1. The 0.5 curve 
also lies near a temperature stability maximum, be­
cause when X~20 is less than 0.44, the amphibole-out 
curve descends in temperature with decreaSing X~20. 

6. Summary 

Experiments and theory developed in this paper in­
dicate that the upper temperature limit of amphibole 
stability in a melt is a function of pressure, tempera­
ture andfl'l2o , the fugacity of H20 in the melt. More­
over, to fully characterize amphibole stability, we 
must relate those intensive parameters to possible 
reactions involving amphibole . In calcalkaline melts, 
it appears that the upper temperature stability limit 
of amphibole for any X~20 may represent either an 
incongruent melting or a dehydration reaction, depen­
ding upon total pressure and composition of the fluid 
phase in equilibrium with the melt. The maximum up­
per temperature stability limit may lie either above or 
below the H20-saturated upper temperature stability 
limit, depending upon total pressure . 

The maximum upper temperature stability limit 
was determined experimentally at 5.5 kb in andesite 
melt. The temperature is 940°C, at a H20 content in 
melt of 4.5 percent (X~o = 0.44). The maximum at 
5.5 kb represents the point at which amphibole break­
down changes from a predominantly melting reaction 
(eq. 2) to a dehydration reaction (eq. 4). Amphibole 
continues to melt partially at H20 contents in melt 
less than 4.5 percent, but H20 produced by its dehy­
dration is greater than that required to enter the 
amount of liquid produced by its melting. 

7. Petrologic applications 

The maximum temperature stability limit of am­
phibole determined at 5.5 kb, 940°C, is probably ap­
plicable to most calc alkaline melts. Because the maxi­
mum amphibole-out curve (fig. 4c) has a very steep 
slope, 950°C probably is the upper temperature limit 
of amphibole stability in calcalkaline melts whose 
fluid phase contains only H20 and CO2 at depths less 
than 35 km. It is possible that the halogens may in­
crease amphibole stability, however. 

Amphibole is also a possible index to H20 content 
of calcalkaline melts. The presence of amphibole pheno­
crysts cannot of itself indicate H20 content, because 
the upper stability limit of amphibole may change 
very little with wide variations in X~20 (fig. 4c). 
However, while the amphibole-out curve may change 
very little with X~20' the other silicate liquidi change 
considerably in temperature isobaric ally and may lie 
above or below the amphibole-out curve for a partic­
ular X~20. For example, in Paricutin andesite the 
plagioclase liquidus is higher in temperature than the 
family of amphibole-ou t curves unless H20 con ten t in 
melt is more than 6 percent [16] . Petrographic criteria 
indicating coexisting plagioclase and amphibole pheno­
crysts in an andesite of that composition would be 
strong evidence that H20 content in the magma was 
near 6 percent. 

The principles of amphibole stability developed for 
andesite melt are undoubtedly applicable to basalt 
melt. The H20-undersaturated partial melting of am­
phibole-bearing basalt may playa very important role 
in generation of the calc-alkaline suite [3] . This study 
affirms the possibility of such a mechanism, since am­
phibole is shown to exist near or above its H20-sat­
urated stability limit in silicate melts over a wide range 
of water-undersaturated conditions. Indeed, fig. 4c 
sUp,gests that at 9 kb an;phibole may be as stable when 
X~20 = 0.3 as when XH20 = 1.0. 
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